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Sensor telemetry is at the heart of IoT. But while it can lead to amazing insights, it can also 
be noisy and inconsistent. There are two main sources of the problem. First, all sensors 
have hardware limitations and only measure to a certain degree of accuracy, with sequential 
readings having some amount of variance. (We call this variation in sensor readings, “sen-
sor noise”.) Second, even if a sensor could measure with perfect accuracy and precision, the 
world itself that the sensor is measuring still presents variation; for instance, an IR distance 
sensor is affected by sunlight.

We can accept noise and inconsistency as a reality of IoT, but we can also take reasonable 
steps to reduce them. For instance, is there more accurate hardware available? Are there ad-
justable gain, sensitivity, positioning, or other calibrations to make on our sensors? Can we 
reduce environmental factors? Should we average out multiple readings over time? In many 
cases, these basic steps are enough to allow the data of interest to stand out.

But when more these basic steps have been pushed to their limits—or when they are im-
possible, impractical, or costly—we can use software techniques to filter out the noise and 
variation in readings. In this 2-part series, we will look at some approaches to reducing noise 
and gaining insight on the underlying data.

First, we will introduce a case study and attempt to solve it with the straightforward tech-
niques of averages, running averages, and even weighted predictions using linear regression.

In the second part, we will add a more robust probabilistic technique to our toolkit known 
as Kalman Filtering. It will allow us to factor in sensor noise, combine data from multiple 
sensors, and use our knowledge about what we are monitoring to develop a dynamic model 
of our data.

Use Case: Monitoring the Water Level of a Storm Drain
Let’s imagine we are monitoring a municipality’s storm drain system, and we want to know 
the current level of water at a certain point. For redundancy, we install two separate sensors: 
a float sensor that rests on top of the water, and an ultrasonic sensor mounted above the 
channel. The float sensor has an inherent accuracy of +/- 4 cm, but is heavily influenced by 
water churn, rising and falling with waves. The broad, cone shaped detection area of the 
ultrasonic sensor is not affected by churn, and its placement out of the water protects it. 
However, it is less accurate with greater distance to the water, ranging from +/- 1 cm at high 
water levels to +/- 10 cm at low water levels.
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Simulation Setup
Let’s talk about setting this up in Losant.

In our water level example, we have two sensors measuring the same thing. This could be set up as either two 
separate devices in Losant (one for each sensor) or as a single device reporting two depth attributes. We’ll 
choose the latter, as this would likely be data from out in the field, and there’s a good chance both sensors 
would report through a single gateway. So we add floatDepth and ultrasonicDepth as device attributes to a sin-
gle device.

Finally, because this is a simulation, we will track the actual simulated depth of the water level and the actual 
rate of change. A production implementation would not have these values, and they are only ever shown in light 
gray on the dashboard charts.

If our imaginary remote gateway supports MQTT, we can have it report device state directly to Losant. Then, 
without even having to set up a workflow, we can view the reported data using a Losant Dashboard with a Time 
Series Graph Block.
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We also know that the water level 
tends to move in one direction or 
the other based on recent weath-
er. Aside from small variations 
from surface turbulence, the wa-
ter level will either be stable, ris-
ing, or falling, and won’t switch 
rapidly from one to another. So, 
in addition to filtering out some 
of the sensor noise to get a more 
accurate reading, we’d also like 
to get a sense of the water level’s 
current rate of change—some-
thing our sensors can’t directly 
measure—without getting mis-
led by small variations in sensor 
readings. This could help us plan 
preemptive actions as the water 
approaches a critical depth.

BLOG SUMMARY
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Here we see both sensors’ read-
ings in green, with the natural 
variation and inaccuracy showing 
up clearly in the reported values. 
The light green line, representing 
the ultrasonic sensor, has more 
variance because the lower lev-
el of the water is not in its favor. 
More to the point, the water level 
is actually slowly rising here! It’s 
a gradual rate of only 2cm / min-
ute, but because of all of the sen-
sor noise, that’s very hard to tell 
visually. Our hope is to draw this 
feature out more clearly with the 
techniques below.

Reducing Noise with Aggregations and Simple Averages
Losant already provides us with 
some powerful aggregation fea-
tures. The above chart was a 5 
minute time series with a 1 sec-
ond resolution and no aggrega-
tion. If we lower the resolution, 
we can choose to visualize the 
data using the mean, median, 
min, max, or several other aggre-
gation methods.

Using a 10 second resolution with 
the ‘mean’ aggregation meth-
od, we’ve already reduced a fair 
amount of the noise. However, this is a visual representation only and does not allow us to do 
much with the data. These are also both measuring the same depth, so a combined value would 
be even better. To accomplish this, we’ll set up a third device attribute called combinedDepth.



The gateway is not reporting a combinedDepth for us, so 
we’ll need to listen to the reported state and calculate 
it ourselves. We can easily do this in a workflow with the 
Device: State Trigger.

When floatDepth or ultrasonicDepth are reported, the 
workflow will trigger with that data.

We are only interested if both sensors report, as we are 
calculating their average.

Then we simply average them together and report the 
average to the new attribute. We are careful to select 
“Use the time of the current payload,” which will match 
the reporting time of the original state.

Adding this third, computed attribute to our chart shows 
us that we have indeed combined our values together 
into a nice average:

We still have a 10 second mean aggregation, but now some of the individual sensor noise is bal-
anced out by the other sensor. Still, when both sensors happen to report low or high together, we 
get artificial bumps in our average.
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Combining Sensor Readings

A Running Estimate
Since we are now tracking a computed value, we can go ahead and add a little more logic to 
it. One approach is to make this value more than an instantaneous average. It can instead 
look back at the previous values and combine them with the new readings for a running aver-
age. This should allow us to filter out some of the sensor noise by downplaying the variation 
in new values.
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We add time series blocks to our workflow to query the past data for each of our 
sensor readings.

One parameter here is how far back we want to look. For instance, we might 
choose to have a 30 second running average.

We can let the Time Series Node provide us with the sum and count if we use 
one of the predefined resolutions and set the aggregation method to “mean”. We 
won’t use the mean value it gives us, because we want to first add in the new 
sensor readings. But the node helpfully provides both the “sum” and the “count” 
for us to add the new sensor readings to.

Since the Time Series returns an array of points, we pull out the most recent one since 
that’s the one with values we are interested in.

Then we divide the result to get a running average.

Adding this new value to our chart, 
we see a slightly less-variable line. 
Here it is pictured in purple: 

If we return our sensor readings 
(green) to their actual values we can 
see just how well the running average 
is performing. Overall this is giving us 
the best visual estimate so far.

You may notice, however, that it tends 
to be slightly low. That’s because our 
water level is rising, and incorpo-
rating past data will always drag a 
running average a bit into the past. 
We can address this with a different 
technique that involves estimating 
the rate of change—something we 
wanted to track anyways—and using 
it to make predictions.

{{working. lastFloatTimeSeriesPoint.sum}} +
{{working. lastUltrasonicTimeSeriesPoint.sum}} +
{data.floatDepth}] + fídata.ultrasonicDepth}}

{{working. lastFloatTimeSeriesPoint.count}} +
{{working. lastUltrasonicTimeSeriesPoint.count}]+2
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The rate that the water depth is changing is essentially a velocity, the formula for which is the 
change in value divided by the change in time.

In our existing workflow, we can add a calculation of this by comparing past data across time. 
If we just use the last two data points to do this, though, the velocity will rapidly fluctuate due 
to the sensor noise. Instead we’d like to get an average recent velocity. There’s more than one 
way to do this, but a sensible method is using simple linear regression. We have a scatterplot of 
values and times, so finding the best fitting line through these points will yield the velocity in 
the form of the line’s slope.

To use linear regression with a time series, time is our independent variable (x) and the value is 
our dependent variable (y). We replace the timestamps with an epoch time equivalent so that 
they are plottable integers, but to keep the numbers lower, we subtract off 1,650,000,000. Now 
our epoch value represents “seconds since April 15, 2022” instead of “seconds since January 1, 
1970”.

For the linear regression calculation itself, it’s more straight forward to jump into a function node.

With the slope and intercept of the 
best-fitting line, we can now ex-
tend the line of best fit to the cur-
rent time, and we’ll be looking at a 
loose but reasonable prediction of 
the value. Then we can average this 
prediction in with sensor readings 
to create an estimate. This approach 
should allow good estimates even 
when the depth is rising or falling:

The prediction depth initially per-
forms worse than the running av-
erage. Why? Because the running 
average gives equal weight to each 
of the past data points and the new sensor readings, while the prediction depth combines all 
the past data into a single point. Instead of new sensor readings making up 3% (2 out of 62 data 
points) of the new value with a running average, they make up 66% (2 out of 3 data points) of the 
new value with the prediction.

Using Rate of Change to Predict Values

Δx

Δt
v=
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However, we can easily adjust the 
weight of our prediction. In fact, 
giving it the same ratio as the run-
ning average results in a similar val-
ue, but one that is aware of rate of 
change!

That’s not bad, and we could play 
around with this weight more to 
find a value that is smooth but still 
responsive to new data.

Visualizing the Rate of Change
Since we are already calculating the line that best fits the recent data, we can use its slope 
as an estimate of the water level’s rate of change, or velocity. We add another attribute to 
our device, velocityEstimate, and save the value as state at the same time as our prediction.

We’ll show this estimate in a few different ways on our final dashboard: as a simple value 
using a Gauge, as a value over time with a Time Series Graph, and as a human friendly sum-
mary using an Indicator:
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At the time of the screenshot, the 
simulated velocity was set to +0.1 
cm/s. We can see in the velocity 
graph (bottom-right) that our es-
timated velocity is hovering fairly 
close to the true value. We’ve also 
added an indicator block showing 
a human-friendly summary of the 
velocity: whether it is rising, falling, 
or stable.

This block uses the estimated rate of change. However, that specific value is a little too variable, 
because it’s constantly adjusting our estimated depth up and down to track the water level. We 
need to average this out a little over time, and consider how much it’s deviating.

In the indicator block, we consider both the mean of the estimated velocity as well as its standard 
deviation over a period of time (5 minutes). If the standard deviation is larger than the velocity’s 
distance from 0 (say, a mean of 0.1 with a standard deviation of 1) we can’t be very confident about 
whether the level is rising or falling. So if we have a high standard deviation, we choose to report 
this as “Fluctuating” rather than give a bad estimate.

Summary
We’ve taken 2 sensors giving quite noisy data and used various techniques to filter it out and 
derive actionable insights. First, we used the dashboard blocks’ built-in aggregation to get a 
smoother visualization of the data. Next, we created a combined depth reading that factored 
in both sensors. Then we brought in past data to smooth out the combined value as a run-
ning average. Finally, we used linear regression to estimate the depth’s rate of change and 
create a predicted value, which we were able to weigh with the actual observations.

All of these techniques allowed us to view our data with less noise. The linear regression 
prediction, though, also gave us a deduced value of the water depth’s velocity. With this we 
were able to add a simple, actionable indicator to our dashboard.

We could combine some of these techniques, or continue to refine them. For instance, since 
we know the ultrasonic sensor’s accuracy changes with the water depth, we could weigh its 
value accordingly based on the depth. However, we’ll instead shift gears in the second part 
of this series to look at Kalman Filters. It will incorporate many of the same principles we’ve 
used here, but in a more cohesive way that considers various probabilities from the very be-
ginning. Our work in this first part will serve as an excellent baseline against which we can 
compare our Kalman Filter’s performance.
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In part 1 of this 2-part series, we looked at a few ways to use software to filter out noisy sensor 
data. Our case study is a municipality monitoring the depth of a storm water system, using two 
separate sensors with different strengths and weaknesses.

With some simple techniques, we were able to accomplish quite a lot. First, if our visualization 
is our only goal, then the Time Series Block’s aggregation methods already gives us everything 
we need to smooth out our data’s representation. Second, using a workflow to calculate a com-
bined average brought our sensor readings together, and using a running average allowed us to 
dampen the effect of outlying sensor data. Finally, deriving a pattern—the rate of change—and 
building it into our estimate using linear regression allowed us to loosely predict the next read-
ings and prevent our estimate from lagging behind changes.

The Kalman Filter will allow 
us to do all of these things 
as well, but with a more ro-
bust probabilistic framework. 
Our end result will be Losant 
Dashboard very similar to the 
one we arrived at previously.

The main chart in the top left 
graphs each sensor’s noisy 
reading (light and dark green) 
as well as our estimate de-
rived with Kalman Filtering 
(orange). On the right we have 
our current estimate of the 
water’s depth and the rate of 
change, as well as a chart and 
indicator showing our statisti-
cal belief in that rate of change (shown here as “Rising” at a rate of .067 cm/s, with a standard 
deviation of 0.013 cm/s). The controls are used only for the simulation, changing the actual 
water level and resetting the Kalman Filter.

PART 2

Implementing a Kalman Filter for Better Noise Filtering
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In short, a Kalman Filter works by maintaining an estimate of state and predicting how it will 
change, then comparing that estimate with observed values. Both the expected and the observed 
values have an amount of uncertainty associated with them. The algorithm adjusts its belief for 
the next cycle by resolving the difference between the expected and observed values according 
to these uncertainties.

That’s a bit of a mouthful, but it will become a little more intuitive with our concrete example. If 
you’d like a more thorough explanation of Kalman Filters, I recommend Brian Douglas’ introduc-
tion which offers an excellent balance between thoroughness and simplicity.

In our storm drain water level example, we will maintain a belief 
about the current water depth and the depths’ rate of change (veloc-
ity). Combined, these are our state, which is just our best guess. We 
will also maintain estimates of how confident we are in these values, 
expressed with variances. Together these variances are known as the 
P matrix.

If you’re familiar with probability, you may notice that at this point 
we essentially have gaussian distributions. By definition, a gaussian 
distribution is one that can be presented by a mean and standard 
deviation. You can see these drawn in on the axes of this chart.

We use a matrix for tracking the variances so that we can estimate 
covariances as well. Covariances are a measure of how variables af-
fect each other. For instance, the more we think the depth’s rate of 
change is, the higher we will expect its depth to be. This gives the 
gaussian its diagonal appearance in the chart above. At this point 
we have accounted only for the uncertainty in our existing estimate.

Next, we will create a linear model of how this state changes from 
one step in time to the next. For depth, this will simply be that the 
next depth = the last depth + the rate of change. We will not expect 
the velocity to change of its own accord (we are not tracking any type 
of acceleration). This transformation recipe is known as the F matrix. 
So here already is one place where we are building in our knowledge 
of the system, i.e. that there is a reasonable expectation for a some-
what consistent rate of change.

If we knew of other external factors (say, a valve opening that would 
increase the flow) we could apply those transformations at the end 
of this step, which is known as a U matrix. For simplicity, we are not 
using a U matrix here.

Applying the F matrix to our current state, we create a prediction.

Kalman Filter
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Remember, we are only using our current state and our knowledge 
about how it behaves here. Notice that the variances grew larger. We 
are estimating into the future, so we are less confident about the val-
ues. In fact, we can choose to add in additional hard-coded variation 
known as process noise, or the Q matrix, to represent our uncertainty 
in our model.

This prediction step was the first of two key Kalman phases. The sec-
ond is when we update our prediction based on new observations—
specifically our sensor readings. Due to sensor noise that we write 
into our Kalman Filter (more on this below), these observations also 
have their own gaussians.

Deciding how much variance to assign our observations is part of 
refining our Kalman model. In this case, we have some information 
about their accuracy, so we can start with those values. We’ll likely 
adjust them as we fine tune our model to account for other fac-
tors like water churn. In any case, the observation uncertainties are 
known as the R matrix, and the resulting probability distribution is 
shown visually along as the axis.

The example chart above shows the sensor reading came in a little 
higher than we expected, which also means that the velocity was a 
little higher than expected (only one sensor’s gaussian is shown on 
this chart). With this reading, we are ready for the update phase of 
the Kalman Filter process.

We combine our prediction and observation, weighting the result by 
how much deviation each distribution has.

We end up with an updated and more accurate estimate, and the 
process starts over. Thus we have a cycle of predictions and obser-
vations. When we predict, we lose a little bit of certainty. When we 
get new data, we gain a little bit of certainty. The exact specifics are 
largely handled by the Kalman Filter formulas, which use a lot of 
linear algebra to deal with all the matrices. Other than implementing 
these, most of our work is fine tuning the different variables that 
controls how the filter behaves (for instance, how much noise each 
sensor has).

Finally, in our example, we have two sensors giving readings. We es-
sentially perform Predict -> Update -> Update. More sensor data can 
only help us.
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Earlier, we discussed using 2 separate attributes on a single device to track the 
sensor readings. Here we’ll add a third depth attribute to track our best estimate 
using the Kalman Filter. We want to make sure to keep these 3 depth measure-
ments (2 sensors + 1 estimate) separate. We don’t technically have to store the 
observations for Kalman to work, but we want to see them on the graph.

In addition to the depth, we’ll also set up attributes for the estimated rate of 
change (velocity) and the P matrix. As a reminder, the P matrix holds the varianc-
es and covariances of our current estimate. Even though we’ll only ever use its 
last value, storing it as Device State makes more sense due to how frequently it 
will be changing.

We want the Kalman Filter to run every time we receive new telemetry, since the 
new observations will improve our depth estimate. Just like we did in part 1, we’ll 
set up a workflow that’s triggered by our device receiving its sensor data. This 
time it will run the Kalman process, and then update the device’s state with the 
new estimates.

The workflow is triggered by the device receiving new state for the floatDepth 
and/or ultrasonicDepth.

We’ll prepare the latest depth estimate (X), velocity estimate and covariance ma-
trix (P) using the values from the composite state of the Device: Get node.

Since we use the velocity to estimate how much the level has changed over time, 
we also need to calculate how much time has elapsed.

Finally, we set up the transformation matrix (F) and a little bit of hard coded noise 
(Q) to account for our reduced confidence in future estimates.

Now we run the Kalman Prediction, using a custom node (explained in more 
depth below).

Next we prepare for the update phase by readying our observations (Z) from the 
state report that triggered this workflow. We also set up the observation noise (R) 
matrices—one per sensor—and a simple utility matrix (H) that converts between 
our tracked Kalman state (two values, depth and acceleration) and our observa-
tions (a single value, depth).

We run the Kalman Update phase once per new observation, again using custom 
nodes. The first takes in the result of our predict phase, and the second takes in 
the result of the first update. In other words, they are processed serially.

Finally, we save the new depth, velocity, and P matrix as device state.

Encapsulating the Kalman phases in custom nodes makes it very simple to con-
trol the overall logic flow. For instance, it was trivial to add a second observation 
step. By setting up all of our matrices in this outer workflow, it’s also simple to 
fine-tune the actual values without the mess of the Kalman formulas. Then we 
simply pass these matrices to the custom nodes.

Implementing the Kalman Filter in Losant
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We have to tune our filter values to approximate our belief of the sensor noise and environmental 
variations. First, we express our belief of how much our estimation process loses accuracy, the so-
called process noise. After some experimentation, we’ll settle with a process noise (Q) matrix of:

[0.003     0]
[0 0.00005]

The top left value here is additional variance for the depth, and the bottom right is additional 
variance for the rate of change. Remember we are storying two variables in state (depth and ve-
locity) so we have 2x2 matrix. Here .003 is added to the variance of the estimate of the depth, and 
.00005 is added the variance of the velocity. No amounts are added to the covariances. Higher 
values (say, 1 and .01) resulted in much more erratic values. Lower values (even 0 and 0) created 
smoother, more stable values, but ones that did not catch on to real changes very quickly. It can 
be quite a bit of trial and error to get stable values that also respond to real changes.

Earlier, we did not take the sensors’ accuracies into consideration, other than to try to eliminate 
the resulting noise. The Kalman Filter, though, naturally incorporates observation uncertainty in 
the form of the R matrix. This is the gaussian distribution seen in green on the charts above.

For the float sensor noise, we find a value for the observation uncertainty matrix that works well 
of [25]. This is a 1x1 matrix because there is only one value with the sensor readings. This number 
may seem high, but it has to account for both the sensor’s inaccuracy (+/-4 cm) and the natural 
churn of the water. Variance is also the standard deviation squared (which would be 16 just for the 
inaccuracy of the sensor), so 25 is not significantly higher.

If the value we choose is too high, the depth estimate will be more stable but will also be slow to 
respond to true depth changes. If it’s too low, the estimate will start to exhibit the erratic behavior 
of the sensor readings as it pays too much attention to each reading.

Tuning our Filter

1000-min(depth,999)

10
+5

The ultrasonic sensor’s R matrix is similar to the float 
sensor’s, but has a variance that is affected by the dis-
tance of the sensor to the water level. If the sensor is 
mounted at 10m high (=1,000 cm), the distance is 1,000 
minus the previous estimated depth of the water. (To 
make sure our distance stays above 0, we’ll set a max-
imum height for this calculation of 999cm.) In the end, 
we’ll use this equation.

With this equation, a high water level of 900cm yields a 
variance of [15]. A low water level of 50cm yields a vari-
ance of [103.5].
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Let’s take a look under the hood of the Kalman: Predict custom node.

The formulas for the prediction result in estimated values for state (X) and 
the covariance matrix (P). They are often written with a ˆ, or hat.

X_HAT = F @ X
P_HAT = F @ P @ F.T + Q

Since the F matrix transforms the current state to the next state, it is a simple 
matter of taking the dot product (@) of those two matrices.

We’re using 3 custom nodes for the matrix operations here: Matrix Transpose, 
Matrix Multiply, and Matrix Arithmetic.

We will do the same for the updated P matrix, with the result multiplied by 
the transposed transformation matrix and the process noise added in.

Inside the Kalman Filter Algorithm
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The Kalman: Update custom node works very similarly, albeit with more steps:

The formulas for both prediction and update phases give updated values 
for the state (X) and the covariance matrix (P). To distinguish these from the 
predict phase, we will refer to them here as X_NEW and P_NEW.

The update step formulas are:

Y = Z-H@X_HAT 
S = H@P_HAT@H.T+R 
K = P_HAT@H.T@inv(S) 
X_NEW = X_HAT+K@y
P_NEW = (I - K@H)@P_HAT

We first calculate Y, the innovation, which represents the difference between 
our predicted value and the observed value.

Next, we need S, the innovation covariance. This is the sum of the estimate’s 
covariance and the observations covariance. They have to be adjusted to be 
in the same dimensions first. Since we will later use the inverse of S, we use 
another custom node that calculates the inverse of a matrix.

Creating a ratio between our previous covariance and the innovation covari-
ance gives us the Kalman Gain. Roughly, this is the amount of the innovation 
we want to apply to our estimate.

Using the Kalman Gain, we update our estimate a certain amount towards the 
new observation.

Similarly, we use the Kalman Gain to update our covariance.

Inside the Kalman Filter Algorithm (CONTINUED)
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We report the output of the Kalman 
process (predict->update->update) 
as device state. Our output estimate 
of depth and velocity are simple val-
ues, while our P matrix is encoded 
into JSON to hold the 2-dimensional 
covariances. We’ve already seen the 
end result of visualizing these esti-
mates: a Losant Dashboard that in-
cludes this time series chart of the 
estimated depth overlaid on top of 
the noisy sensor readings.

This really shows how much the Kal-
man value for depth is filtering out 
the noisy readings (green). We can also see how one of the sensors (light green) has more variation. 
Yet because the Kalman Filter adjusted for each sensor’s noise independently, the estimated value 
(orange) isn’t confused by this.

As you can see, the part 1 method in 
red does filter out some noise, but 
not quite as smoothly as the Kalman 
Filter estimate in orange.

To be fair, we could have continued 
taking steps to make the part 1 meth-
od more robust, such as considering 
variable sensor performance, adding 
in a process noise equivalent, and 
considering the velocity’s probabili-
ty distribution in addition to the val-
ue’s probability distribution. Howev-
er, as we take measures to try and 
get closer to the performance of a 
Kalman Filter, we are arguably just slowly building it up as one.

In our example the approaches are of similar mathematical complexity: one using more manual 
data transformations and calculations, one using linear algebra with matrix operations. While the 
Kalman Filter required implementing formulas that are less intuitive at first, it is easier to extend 
it once that foundation is in place. Adding additional sensors, dynamic sensor variances, the con-
cept of acceleration (in addition to velocity), and even additional types of sensors are all relatively 
straightforward tasks.

Visualizing the Results

Kalman vs Simple Average
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Kalman Filters are extremely versatile. They are used in everything from missile tracking to self-driv-
ing cars. In our case, our final dashboard shows us exactly what we were aiming to accomplish. We 
have a less noisy estimate of the water depth, which still responds to true changes in the depth. We 
are also incorporating the readings of multiple sensors, each with its own accuracy, into this simple 
clean value. Finally, we have a reliable, human-friendly metric that gives us a new insight into our 
system—the rate of change—which is completely derived from the noisy estimates from the sensors.

To a large extent we were able to accomplish these without using a Kalman Filter in part 1. However, 
the Kalman Filter is more probabilistically thorough. Whereas our earlier attempts relied on vari-
ous averages and the line of best-fit 
for past data, the Kalman Filter fac-
tored in highly-tunable uncertain-
ties for each sensor and the current 
estimate of both depth and velocity. 
Using these, it gave us better noise 
reduction and a much more stable 
depth estimate.

As a final comparison, consider a 
case where the storm drain changed 
suddenly from filling to draining (+.1 
cm/s to -.1 cm/s).

Both approaches stayed relatively 
close to the true values, but notice 
the red line from part 1 bouncing 
above and below the actual depth. 
It is having trouble converging 
to an estimate of the new rate of 
change, as seen more clearly in the 
velocity graph.

Over time with steady data it will 
converge more closely to the true 
value, but remember that it is simply 
using linear regression over the past 
30 seconds, while the Kalman Filter 
is considering how much uncertainty 
it has in its own velocity estimate.

Summary
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There are also variants and extensions of Kalman Filters that are commonly used. Perhaps most ap-
plicable here are variants that adjust the R (sensor noise) and Q (process noise) matrix dynamically 
based on the residuals, which are the differences between the new estimates and the sensor read-
ings it observes. With this approach, we might create a filter that responds more quickly to changes. 
If our sensor readings are suddenly very different than what we’d expect, the filter would quickly 
lower its certainty about its ability to make predictions.

However, even the straightforward Kalman Filter we have created here resulted in an impressively 
accurate reduction of sensor noise.
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Losant Provides the Tools You Need To Succeed
Losant is an easy-to-use and powerful enterprise IoT platform designed to help teams quickly 
and securely build real-time connected IoT products and services for their customers. Losant 
uses open communication standards to provide connectivity from one to millions of devices and 
provides powerful data collection, aggregation, and visualization features to empower enterprise 
teams with new data insights. Edge features are integrated directly into the Losant IoT platform for 
seamless integration of connected and non-connected devices. Start independently or work with 
Losant’s experienced solution engineers.

If you’d like to learn more about how Losant can help your organization meet its IoT application 
development needs, connect with us at:

www.losant.com/contact-us
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