
BLOG SUMMARY

Sensor Noise and Straightforward
Software Techniques To Reduce It

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

Sensor telemetry is at the heart of IoT. But while it can lead to amazing insights, it can also
be noisy and inconsistent. There are two main sources of the problem. First, all sensors
have hardware limitations and only measure to a certain degree of accuracy, with sequential
readings having some amount of variance. (We call this variation in sensor readings, “sen-
sor noise”.) Second, even if a sensor could measure with perfect accuracy and precision, the
world itself that the sensor is measuring still presents variation; for instance, an IR distance
sensor is affected by sunlight.

We can accept noise and inconsistency as a reality of IoT, but we can also take reasonable
steps to reduce them. For instance, is there more accurate hardware available? Are there ad-
justable gain, sensitivity, positioning, or other calibrations to make on our sensors? Can we
reduce environmental factors? Should we average out multiple readings over time? In many
cases, these basic steps are enough to allow the data of interest to stand out.

But when more these basic steps have been pushed to their limits—or when they are im-
possible, impractical, or costly—we can use software techniques to filter out the noise and
variation in readings. In this 2-part series, we will look at some approaches to reducing noise
and gaining insight on the underlying data.

First, we will introduce a case study and attempt to solve it with the straightforward tech-
niques of averages, running averages, and even weighted predictions using linear regression.

In the second part, we will add a more robust probabilistic technique to our toolkit known
as Kalman Filtering. It will allow us to factor in sensor noise, combine data from multiple
sensors, and use our knowledge about what we are monitoring to develop a dynamic model
of our data.

Use Case: Monitoring the Water Level of a Storm Drain
Let’s imagine we are monitoring a municipality’s storm drain system, and we want to know
the current level of water at a certain point. For redundancy, we install two separate sensors:
a float sensor that rests on top of the water, and an ultrasonic sensor mounted above the
channel. The float sensor has an inherent accuracy of +/- 4 cm, but is heavily influenced by
water churn, rising and falling with waves. The broad, cone shaped detection area of the
ultrasonic sensor is not affected by churn, and its placement out of the water protects it.
However, it is less accurate with greater distance to the water, ranging from +/- 1 cm at high
water levels to +/- 10 cm at low water levels.

IoT Connected Products for OEMs and Manufacturers

Taylor Morgan / Lead Software Engineer

PART 1

Simulation Setup
Let’s talk about setting this up in Losant.

In our water level example, we have two sensors measuring the same thing. This could be set up as either two
separate devices in Losant (one for each sensor) or as a single device reporting two depth attributes. We’ll
choose the latter, as this would likely be data from out in the field, and there’s a good chance both sensors
would report through a single gateway. So we add floatDepth and ultrasonicDepth as device attributes to a sin-
gle device.

Finally, because this is a simulation, we will track the actual simulated depth of the water level and the actual
rate of change. A production implementation would not have these values, and they are only ever shown in light
gray on the dashboard charts.

If our imaginary remote gateway supports MQTT, we can have it report device state directly to Losant. Then,
without even having to set up a workflow, we can view the reported data using a Losant Dashboard with a Time
Series Graph Block.

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

We also know that the water level
tends to move in one direction or
the other based on recent weath-
er. Aside from small variations
from surface turbulence, the wa-
ter level will either be stable, ris-
ing, or falling, and won’t switch
rapidly from one to another. So,
in addition to filtering out some
of the sensor noise to get a more
accurate reading, we’d also like
to get a sense of the water level’s
current rate of change—some-
thing our sensors can’t directly
measure—without getting mis-
led by small variations in sensor
readings. This could help us plan
preemptive actions as the water
approaches a critical depth.

BLOG SUMMARY

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

Here we see both sensors’ read-
ings in green, with the natural
variation and inaccuracy showing
up clearly in the reported values.
The light green line, representing
the ultrasonic sensor, has more
variance because the lower lev-
el of the water is not in its favor.
More to the point, the water level
is actually slowly rising here! It’s
a gradual rate of only 2cm / min-
ute, but because of all of the sen-
sor noise, that’s very hard to tell
visually. Our hope is to draw this
feature out more clearly with the
techniques below.

Reducing Noise with Aggregations and Simple Averages
Losant already provides us with
some powerful aggregation fea-
tures. The above chart was a 5
minute time series with a 1 sec-
ond resolution and no aggrega-
tion. If we lower the resolution,
we can choose to visualize the
data using the mean, median,
min, max, or several other aggre-
gation methods.

Using a 10 second resolution with
the ‘mean’ aggregation meth-
od, we’ve already reduced a fair
amount of the noise. However, this is a visual representation only and does not allow us to do
much with the data. These are also both measuring the same depth, so a combined value would
be even better. To accomplish this, we’ll set up a third device attribute called combinedDepth.

The gateway is not reporting a combinedDepth for us, so
we’ll need to listen to the reported state and calculate
it ourselves. We can easily do this in a workflow with the
Device: State Trigger.

When floatDepth or ultrasonicDepth are reported, the
workflow will trigger with that data.

We are only interested if both sensors report, as we are
calculating their average.

Then we simply average them together and report the
average to the new attribute. We are careful to select
“Use the time of the current payload,” which will match
the reporting time of the original state.

Adding this third, computed attribute to our chart shows
us that we have indeed combined our values together
into a nice average:

We still have a 10 second mean aggregation, but now some of the individual sensor noise is bal-
anced out by the other sensor. Still, when both sensors happen to report low or high together, we
get artificial bumps in our average.

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

Combining Sensor Readings

A Running Estimate
Since we are now tracking a computed value, we can go ahead and add a little more logic to
it. One approach is to make this value more than an instantaneous average. It can instead
look back at the previous values and combine them with the new readings for a running aver-
age. This should allow us to filter out some of the sensor noise by downplaying the variation
in new values.

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

We add time series blocks to our workflow to query the past data for each of our
sensor readings.

One parameter here is how far back we want to look. For instance, we might
choose to have a 30 second running average.

We can let the Time Series Node provide us with the sum and count if we use
one of the predefined resolutions and set the aggregation method to “mean”. We
won’t use the mean value it gives us, because we want to first add in the new
sensor readings. But the node helpfully provides both the “sum” and the “count”
for us to add the new sensor readings to.

Since the Time Series returns an array of points, we pull out the most recent one since
that’s the one with values we are interested in.

Then we divide the result to get a running average.

Adding this new value to our chart,
we see a slightly less-variable line.
Here it is pictured in purple:

If we return our sensor readings
(green) to their actual values we can
see just how well the running average
is performing. Overall this is giving us
the best visual estimate so far.

You may notice, however, that it tends
to be slightly low. That’s because our
water level is rising, and incorpo-
rating past data will always drag a
running average a bit into the past.
We can address this with a different
technique that involves estimating
the rate of change—something we
wanted to track anyways—and using
it to make predictions.

{{working. lastFloatTimeSeriesPoint.sum}} +
{{working. lastUltrasonicTimeSeriesPoint.sum}} +
{data.floatDepth}] + fídata.ultrasonicDepth}}

{{working. lastFloatTimeSeriesPoint.count}} +
{{working. lastUltrasonicTimeSeriesPoint.count}]+2

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

The rate that the water depth is changing is essentially a velocity, the formula for which is the
change in value divided by the change in time.

In our existing workflow, we can add a calculation of this by comparing past data across time.
If we just use the last two data points to do this, though, the velocity will rapidly fluctuate due
to the sensor noise. Instead we’d like to get an average recent velocity. There’s more than one
way to do this, but a sensible method is using simple linear regression. We have a scatterplot of
values and times, so finding the best fitting line through these points will yield the velocity in
the form of the line’s slope.

To use linear regression with a time series, time is our independent variable (x) and the value is
our dependent variable (y). We replace the timestamps with an epoch time equivalent so that
they are plottable integers, but to keep the numbers lower, we subtract off 1,650,000,000. Now
our epoch value represents “seconds since April 15, 2022” instead of “seconds since January 1,
1970”.

For the linear regression calculation itself, it’s more straight forward to jump into a function node.

With the slope and intercept of the
best-fitting line, we can now ex-
tend the line of best fit to the cur-
rent time, and we’ll be looking at a
loose but reasonable prediction of
the value. Then we can average this
prediction in with sensor readings
to create an estimate. This approach
should allow good estimates even
when the depth is rising or falling:

The prediction depth initially per-
forms worse than the running av-
erage. Why? Because the running
average gives equal weight to each
of the past data points and the new sensor readings, while the prediction depth combines all
the past data into a single point. Instead of new sensor readings making up 3% (2 out of 62 data
points) of the new value with a running average, they make up 66% (2 out of 3 data points) of the
new value with the prediction.

Using Rate of Change to Predict Values

Δx

Δt
v=

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

However, we can easily adjust the
weight of our prediction. In fact,
giving it the same ratio as the run-
ning average results in a similar val-
ue, but one that is aware of rate of
change!

That’s not bad, and we could play
around with this weight more to
find a value that is smooth but still
responsive to new data.

Visualizing the Rate of Change
Since we are already calculating the line that best fits the recent data, we can use its slope
as an estimate of the water level’s rate of change, or velocity. We add another attribute to
our device, velocityEstimate, and save the value as state at the same time as our prediction.

We’ll show this estimate in a few different ways on our final dashboard: as a simple value
using a Gauge, as a value over time with a Time Series Graph, and as a human friendly sum-
mary using an Indicator:

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

At the time of the screenshot, the
simulated velocity was set to +0.1
cm/s. We can see in the velocity
graph (bottom-right) that our es-
timated velocity is hovering fairly
close to the true value. We’ve also
added an indicator block showing
a human-friendly summary of the
velocity: whether it is rising, falling,
or stable.

This block uses the estimated rate of change. However, that specific value is a little too variable,
because it’s constantly adjusting our estimated depth up and down to track the water level. We
need to average this out a little over time, and consider how much it’s deviating.

In the indicator block, we consider both the mean of the estimated velocity as well as its standard
deviation over a period of time (5 minutes). If the standard deviation is larger than the velocity’s
distance from 0 (say, a mean of 0.1 with a standard deviation of 1) we can’t be very confident about
whether the level is rising or falling. So if we have a high standard deviation, we choose to report
this as “Fluctuating” rather than give a bad estimate.

Summary
We’ve taken 2 sensors giving quite noisy data and used various techniques to filter it out and
derive actionable insights. First, we used the dashboard blocks’ built-in aggregation to get a
smoother visualization of the data. Next, we created a combined depth reading that factored
in both sensors. Then we brought in past data to smooth out the combined value as a run-
ning average. Finally, we used linear regression to estimate the depth’s rate of change and
create a predicted value, which we were able to weigh with the actual observations.

All of these techniques allowed us to view our data with less noise. The linear regression
prediction, though, also gave us a deduced value of the water depth’s velocity. With this we
were able to add a simple, actionable indicator to our dashboard.

We could combine some of these techniques, or continue to refine them. For instance, since
we know the ultrasonic sensor’s accuracy changes with the water depth, we could weigh its
value accordingly based on the depth. However, we’ll instead shift gears in the second part
of this series to look at Kalman Filters. It will incorporate many of the same principles we’ve
used here, but in a more cohesive way that considers various probabilities from the very be-
ginning. Our work in this first part will serve as an excellent baseline against which we can
compare our Kalman Filter’s performance.

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

In part 1 of this 2-part series, we looked at a few ways to use software to filter out noisy sensor
data. Our case study is a municipality monitoring the depth of a storm water system, using two
separate sensors with different strengths and weaknesses.

With some simple techniques, we were able to accomplish quite a lot. First, if our visualization
is our only goal, then the Time Series Block’s aggregation methods already gives us everything
we need to smooth out our data’s representation. Second, using a workflow to calculate a com-
bined average brought our sensor readings together, and using a running average allowed us to
dampen the effect of outlying sensor data. Finally, deriving a pattern—the rate of change—and
building it into our estimate using linear regression allowed us to loosely predict the next read-
ings and prevent our estimate from lagging behind changes.

The Kalman Filter will allow
us to do all of these things
as well, but with a more ro-
bust probabilistic framework.
Our end result will be Losant
Dashboard very similar to the
one we arrived at previously.

The main chart in the top left
graphs each sensor’s noisy
reading (light and dark green)
as well as our estimate de-
rived with Kalman Filtering
(orange). On the right we have
our current estimate of the
water’s depth and the rate of
change, as well as a chart and
indicator showing our statisti-
cal belief in that rate of change (shown here as “Rising” at a rate of .067 cm/s, with a standard
deviation of 0.013 cm/s). The controls are used only for the simulation, changing the actual
water level and resetting the Kalman Filter.

PART 2

Implementing a Kalman Filter for Better Noise Filtering

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

In short, a Kalman Filter works by maintaining an estimate of state and predicting how it will
change, then comparing that estimate with observed values. Both the expected and the observed
values have an amount of uncertainty associated with them. The algorithm adjusts its belief for
the next cycle by resolving the difference between the expected and observed values according
to these uncertainties.

That’s a bit of a mouthful, but it will become a little more intuitive with our concrete example. If
you’d like a more thorough explanation of Kalman Filters, I recommend Brian Douglas’ introduc-
tion which offers an excellent balance between thoroughness and simplicity.

In our storm drain water level example, we will maintain a belief
about the current water depth and the depths’ rate of change (veloc-
ity). Combined, these are our state, which is just our best guess. We
will also maintain estimates of how confident we are in these values,
expressed with variances. Together these variances are known as the
P matrix.

If you’re familiar with probability, you may notice that at this point
we essentially have gaussian distributions. By definition, a gaussian
distribution is one that can be presented by a mean and standard
deviation. You can see these drawn in on the axes of this chart.

We use a matrix for tracking the variances so that we can estimate
covariances as well. Covariances are a measure of how variables af-
fect each other. For instance, the more we think the depth’s rate of
change is, the higher we will expect its depth to be. This gives the
gaussian its diagonal appearance in the chart above. At this point
we have accounted only for the uncertainty in our existing estimate.

Next, we will create a linear model of how this state changes from
one step in time to the next. For depth, this will simply be that the
next depth = the last depth + the rate of change. We will not expect
the velocity to change of its own accord (we are not tracking any type
of acceleration). This transformation recipe is known as the F matrix.
So here already is one place where we are building in our knowledge
of the system, i.e. that there is a reasonable expectation for a some-
what consistent rate of change.

If we knew of other external factors (say, a valve opening that would
increase the flow) we could apply those transformations at the end
of this step, which is known as a U matrix. For simplicity, we are not
using a U matrix here.

Applying the F matrix to our current state, we create a prediction.

Kalman Filter

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

Remember, we are only using our current state and our knowledge
about how it behaves here. Notice that the variances grew larger. We
are estimating into the future, so we are less confident about the val-
ues. In fact, we can choose to add in additional hard-coded variation
known as process noise, or the Q matrix, to represent our uncertainty
in our model.

This prediction step was the first of two key Kalman phases. The sec-
ond is when we update our prediction based on new observations—
specifically our sensor readings. Due to sensor noise that we write
into our Kalman Filter (more on this below), these observations also
have their own gaussians.

Deciding how much variance to assign our observations is part of
refining our Kalman model. In this case, we have some information
about their accuracy, so we can start with those values. We’ll likely
adjust them as we fine tune our model to account for other fac-
tors like water churn. In any case, the observation uncertainties are
known as the R matrix, and the resulting probability distribution is
shown visually along as the axis.

The example chart above shows the sensor reading came in a little
higher than we expected, which also means that the velocity was a
little higher than expected (only one sensor’s gaussian is shown on
this chart). With this reading, we are ready for the update phase of
the Kalman Filter process.

We combine our prediction and observation, weighting the result by
how much deviation each distribution has.

We end up with an updated and more accurate estimate, and the
process starts over. Thus we have a cycle of predictions and obser-
vations. When we predict, we lose a little bit of certainty. When we
get new data, we gain a little bit of certainty. The exact specifics are
largely handled by the Kalman Filter formulas, which use a lot of
linear algebra to deal with all the matrices. Other than implementing
these, most of our work is fine tuning the different variables that
controls how the filter behaves (for instance, how much noise each
sensor has).

Finally, in our example, we have two sensors giving readings. We es-
sentially perform Predict -> Update -> Update. More sensor data can
only help us.

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

Earlier, we discussed using 2 separate attributes on a single device to track the
sensor readings. Here we’ll add a third depth attribute to track our best estimate
using the Kalman Filter. We want to make sure to keep these 3 depth measure-
ments (2 sensors + 1 estimate) separate. We don’t technically have to store the
observations for Kalman to work, but we want to see them on the graph.

In addition to the depth, we’ll also set up attributes for the estimated rate of
change (velocity) and the P matrix. As a reminder, the P matrix holds the varianc-
es and covariances of our current estimate. Even though we’ll only ever use its
last value, storing it as Device State makes more sense due to how frequently it
will be changing.

We want the Kalman Filter to run every time we receive new telemetry, since the
new observations will improve our depth estimate. Just like we did in part 1, we’ll
set up a workflow that’s triggered by our device receiving its sensor data. This
time it will run the Kalman process, and then update the device’s state with the
new estimates.

The workflow is triggered by the device receiving new state for the floatDepth
and/or ultrasonicDepth.

We’ll prepare the latest depth estimate (X), velocity estimate and covariance ma-
trix (P) using the values from the composite state of the Device: Get node.

Since we use the velocity to estimate how much the level has changed over time,
we also need to calculate how much time has elapsed.

Finally, we set up the transformation matrix (F) and a little bit of hard coded noise
(Q) to account for our reduced confidence in future estimates.

Now we run the Kalman Prediction, using a custom node (explained in more
depth below).

Next we prepare for the update phase by readying our observations (Z) from the
state report that triggered this workflow. We also set up the observation noise (R)
matrices—one per sensor—and a simple utility matrix (H) that converts between
our tracked Kalman state (two values, depth and acceleration) and our observa-
tions (a single value, depth).

We run the Kalman Update phase once per new observation, again using custom
nodes. The first takes in the result of our predict phase, and the second takes in
the result of the first update. In other words, they are processed serially.

Finally, we save the new depth, velocity, and P matrix as device state.

Encapsulating the Kalman phases in custom nodes makes it very simple to con-
trol the overall logic flow. For instance, it was trivial to add a second observation
step. By setting up all of our matrices in this outer workflow, it’s also simple to
fine-tune the actual values without the mess of the Kalman formulas. Then we
simply pass these matrices to the custom nodes.

Implementing the Kalman Filter in Losant

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

We have to tune our filter values to approximate our belief of the sensor noise and environmental
variations. First, we express our belief of how much our estimation process loses accuracy, the so-
called process noise. After some experimentation, we’ll settle with a process noise (Q) matrix of:

[0.003 0]
[0 0.00005]

The top left value here is additional variance for the depth, and the bottom right is additional
variance for the rate of change. Remember we are storying two variables in state (depth and ve-
locity) so we have 2x2 matrix. Here .003 is added to the variance of the estimate of the depth, and
.00005 is added the variance of the velocity. No amounts are added to the covariances. Higher
values (say, 1 and .01) resulted in much more erratic values. Lower values (even 0 and 0) created
smoother, more stable values, but ones that did not catch on to real changes very quickly. It can
be quite a bit of trial and error to get stable values that also respond to real changes.

Earlier, we did not take the sensors’ accuracies into consideration, other than to try to eliminate
the resulting noise. The Kalman Filter, though, naturally incorporates observation uncertainty in
the form of the R matrix. This is the gaussian distribution seen in green on the charts above.

For the float sensor noise, we find a value for the observation uncertainty matrix that works well
of [25]. This is a 1x1 matrix because there is only one value with the sensor readings. This number
may seem high, but it has to account for both the sensor’s inaccuracy (+/-4 cm) and the natural
churn of the water. Variance is also the standard deviation squared (which would be 16 just for the
inaccuracy of the sensor), so 25 is not significantly higher.

If the value we choose is too high, the depth estimate will be more stable but will also be slow to
respond to true depth changes. If it’s too low, the estimate will start to exhibit the erratic behavior
of the sensor readings as it pays too much attention to each reading.

Tuning our Filter

1000-min(depth,999)

10
+5

The ultrasonic sensor’s R matrix is similar to the float
sensor’s, but has a variance that is affected by the dis-
tance of the sensor to the water level. If the sensor is
mounted at 10m high (=1,000 cm), the distance is 1,000
minus the previous estimated depth of the water. (To
make sure our distance stays above 0, we’ll set a max-
imum height for this calculation of 999cm.) In the end,
we’ll use this equation.

With this equation, a high water level of 900cm yields a
variance of [15]. A low water level of 50cm yields a vari-
ance of [103.5].

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

Let’s take a look under the hood of the Kalman: Predict custom node.

The formulas for the prediction result in estimated values for state (X) and
the covariance matrix (P). They are often written with a ˆ, or hat.

X_HAT = F @ X
P_HAT = F @ P @ F.T + Q

Since the F matrix transforms the current state to the next state, it is a simple
matter of taking the dot product (@) of those two matrices.

We’re using 3 custom nodes for the matrix operations here: Matrix Transpose,
Matrix Multiply, and Matrix Arithmetic.

We will do the same for the updated P matrix, with the result multiplied by
the transposed transformation matrix and the process noise added in.

Inside the Kalman Filter Algorithm

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

The Kalman: Update custom node works very similarly, albeit with more steps:

The formulas for both prediction and update phases give updated values
for the state (X) and the covariance matrix (P). To distinguish these from the
predict phase, we will refer to them here as X_NEW and P_NEW.

The update step formulas are:

Y = Z-H@X_HAT
S = H@P_HAT@H.T+R
K = P_HAT@H.T@inv(S)
X_NEW = X_HAT+K@y
P_NEW = (I - K@H)@P_HAT

We first calculate Y, the innovation, which represents the difference between
our predicted value and the observed value.

Next, we need S, the innovation covariance. This is the sum of the estimate’s
covariance and the observations covariance. They have to be adjusted to be
in the same dimensions first. Since we will later use the inverse of S, we use
another custom node that calculates the inverse of a matrix.

Creating a ratio between our previous covariance and the innovation covari-
ance gives us the Kalman Gain. Roughly, this is the amount of the innovation
we want to apply to our estimate.

Using the Kalman Gain, we update our estimate a certain amount towards the
new observation.

Similarly, we use the Kalman Gain to update our covariance.

Inside the Kalman Filter Algorithm (CONTINUED)

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

We report the output of the Kalman
process (predict->update->update)
as device state. Our output estimate
of depth and velocity are simple val-
ues, while our P matrix is encoded
into JSON to hold the 2-dimensional
covariances. We’ve already seen the
end result of visualizing these esti-
mates: a Losant Dashboard that in-
cludes this time series chart of the
estimated depth overlaid on top of
the noisy sensor readings.

This really shows how much the Kal-
man value for depth is filtering out
the noisy readings (green). We can also see how one of the sensors (light green) has more variation.
Yet because the Kalman Filter adjusted for each sensor’s noise independently, the estimated value
(orange) isn’t confused by this.

As you can see, the part 1 method in
red does filter out some noise, but
not quite as smoothly as the Kalman
Filter estimate in orange.

To be fair, we could have continued
taking steps to make the part 1 meth-
od more robust, such as considering
variable sensor performance, adding
in a process noise equivalent, and
considering the velocity’s probabili-
ty distribution in addition to the val-
ue’s probability distribution. Howev-
er, as we take measures to try and
get closer to the performance of a
Kalman Filter, we are arguably just slowly building it up as one.

In our example the approaches are of similar mathematical complexity: one using more manual
data transformations and calculations, one using linear algebra with matrix operations. While the
Kalman Filter required implementing formulas that are less intuitive at first, it is easier to extend
it once that foundation is in place. Adding additional sensors, dynamic sensor variances, the con-
cept of acceleration (in addition to velocity), and even additional types of sensors are all relatively
straightforward tasks.

Visualizing the Results

Kalman vs Simple Average

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

Kalman Filters are extremely versatile. They are used in everything from missile tracking to self-driv-
ing cars. In our case, our final dashboard shows us exactly what we were aiming to accomplish. We
have a less noisy estimate of the water depth, which still responds to true changes in the depth. We
are also incorporating the readings of multiple sensors, each with its own accuracy, into this simple
clean value. Finally, we have a reliable, human-friendly metric that gives us a new insight into our
system—the rate of change—which is completely derived from the noisy estimates from the sensors.

To a large extent we were able to accomplish these without using a Kalman Filter in part 1. However,
the Kalman Filter is more probabilistically thorough. Whereas our earlier attempts relied on vari-
ous averages and the line of best-fit
for past data, the Kalman Filter fac-
tored in highly-tunable uncertain-
ties for each sensor and the current
estimate of both depth and velocity.
Using these, it gave us better noise
reduction and a much more stable
depth estimate.

As a final comparison, consider a
case where the storm drain changed
suddenly from filling to draining (+.1
cm/s to -.1 cm/s).

Both approaches stayed relatively
close to the true values, but notice
the red line from part 1 bouncing
above and below the actual depth.
It is having trouble converging
to an estimate of the new rate of
change, as seen more clearly in the
velocity graph.

Over time with steady data it will
converge more closely to the true
value, but remember that it is simply
using linear regression over the past
30 seconds, while the Kalman Filter
is considering how much uncertainty
it has in its own velocity estimate.

Summary

© LOSANT IoT, 2022

W W W. L O S A N T. C O M

BLOG SUMMARY

There are also variants and extensions of Kalman Filters that are commonly used. Perhaps most ap-
plicable here are variants that adjust the R (sensor noise) and Q (process noise) matrix dynamically
based on the residuals, which are the differences between the new estimates and the sensor read-
ings it observes. With this approach, we might create a filter that responds more quickly to changes.
If our sensor readings are suddenly very different than what we’d expect, the filter would quickly
lower its certainty about its ability to make predictions.

However, even the straightforward Kalman Filter we have created here resulted in an impressively
accurate reduction of sensor noise.

EDGE COMPUTE VISUAL WORKFLOW ENGINEDATA VISUALIZATION END-USER EXPERIENCESDEVICES & DATA SOURCES

Losant Provides the Tools You Need To Succeed
Losant is an easy-to-use and powerful enterprise IoT platform designed to help teams quickly
and securely build real-time connected IoT products and services for their customers. Losant
uses open communication standards to provide connectivity from one to millions of devices and
provides powerful data collection, aggregation, and visualization features to empower enterprise
teams with new data insights. Edge features are integrated directly into the Losant IoT platform for
seamless integration of connected and non-connected devices. Start independently or work with
Losant’s experienced solution engineers.

If you’d like to learn more about how Losant can help your organization meet its IoT application
development needs, connect with us at:

www.losant.com/contact-us

Summary (CONTINUED)

https://www.losant.com/contact-us

